Blog

April 10, 2025

Clipping Showdown: DC:AC ratios aren't equal

Why string inverters will clip less than microinverters, even with the same DC:AC ratios
Regardez le webinaire complet à la demande
Flèche
Microinverter Tax | 7) Clipping Showdown: DC:AC ratios aren't equal

In Chapter 2 we described the difference in DC:AC ratios between microinverters and string inverters, even when batteries aren’t used. This bonus chapter goes into the details of why and how string inverters outperform microinverters.

DC:AC Ratio: What it means

The DC:AC ratio is a key metric in solar design. It compares the total power capacity of your solar modules (DC) to the maximum output capacity of your inverter (AC). For example, a 15kW system with an 11.4kW inverter (or sum of microinverter capacity) has a DC:AC ratio of 1.3:1.

According to Aurora Solar, a leading solar design and performance simulation software, “It often makes sense to oversize a solar array, such that the DC-to-AC ratio is greater than 1. This allows for a greater energy harvest when production is below the inverter’s rating, which it typically is for most of the day.”

However, Aurora Solar continues, “this approach is not without costs. Either spend money on an additional inverter or lose energy harvest to inverter clipping.”

But not all DC:AC ratios behave the same, especially when comparing string inverters and microinverters.

Clipping: String Inverters vs. Microinverters

While both string inverters and microinverters clip energy when module output exceeds inverter capacity, string inverters will clip less on average because:

1. Aggregate Power Smoothing in String Inverters

String inverters manage power at the array level, combining the output of all modules into a single DC input. This means:

  • Modules Balance Each Other: If one group of modules is producing peak power (e.g., west-facing in the afternoon) while another is shaded or operating below peak (e.g., east-facing in the afternoon), the total array output is less likely to exceed the inverter’s capacity.
  • Smoother Output Curve: The combined generation of all modules reduces the likelihood of clipping, even when individual modules are operating at maximum capacity.

2. Per-Module Clipping in Microinverters

Microinverters operate independently for each module, converting DC to AC at the module level, creating inefficiencies:

  • Clipping at Each Module: Each microinverter is rated for a fixed capacity (e.g., 350W). If a 450W module reaches its peak, the excess 100W is clipped—even if other modules in the system are producing less than their peak.
  • No Sharing Across Modules: Unlike string inverters, microinverters can’t aggregate power across modules, so excess energy from high-performing modules is lost, even if other modules are underperforming.

Comparing energy production with a specific example

Let’s see the difference by comparing the performance of microinverters vs. string inverters with the same DC:AC ratio on the same house (see Figure 16) with the following features:

  • 15kW solar installation made up of 35x440W modules
  • 2 arrays: 17 modules in the East (blue), 17 in the West (yellow)
  • The sun is shining on the West array, generating a potential 400W per module
  • The East array generates 250W per module
  • Option 1: 700W optimizers + 11.4kW string inverter (1.35:1 DC:AC ratio)
  • Option 2: 325W microinverters on each module (1.35:1 DC:AC ratio)
Figure 15: home solar installation with East and West arrays

Below we can see the performance comparison between these two configurations. The microinverters in Option 2 clip 13% of the production because they clip at the module level. The string inverter in Option 1 doesn’t clip because the lower output in the East array balances out the higher output of the West array.

Max potential output
  • East: 4,500W (250W x 18)
  • West: 6,800W (400W x 17)
  • Total:  11,300W (4,500W + 6,800W)
DC Architecture: 
  • East: 4,500W (250W x 18)
  • West: 6,800W (400W x 17)
  • Total:  11,300W (4,500W + 6,800W)
  • 0% clipping
AC Architecture
  • East: 4,500W (250W x 18)
  • West: 5,525W (325W x 17)
  • Total:  10,025W (4,500W + 5,525W)
  • 13% clipping

The Daily Difference

The power production curves in Figure 16 illustrate the difference in performance between the two technologies over the course of a single day.

Figure 16: DC vs AC Architecture power production curve comparison

DC Architecture: Will only clip if TOTAL POWER OUTPUT (EAST + WEST arrays) exceeds inverter capacity. With different orientations. Clipping is less likely.

AC Architecture: Clips at each module – so first the EAST then the WEST arrays are clipped, reducing TOTAL POWER OUTPUT. Clipping is more likely.

The Role of Module Orientation

Modules are frequently installed across multiple orientations (e.g., east- and west-facing roofs) because:

  • Residential rooftops are space limited. Multiple orientations capture more surface area.
  • Distributed Peaks: Modules facing different directions produce their peak output at different times of the day, creating a smoother overall output curve.
  • Capture morning and evening hours. Increasingly, the morning and evening are compensated at higher rates by utilities than the middle of the day, in large part due to the prevalence of solar on the grid
  • Reduced Clipping: Even with a high DC:AC ratio, the total system output is less likely to exceed the inverter’s capacity with string inverters

Conclusion

Not all DC:AC ratios are created equal. While both string inverters and microinverters clip energy when DC power exceeds AC capacity, string inverters significantly reduce clipping losses by aggregating power across the entire array.

For homeowners looking to maximize their energy production and savings, a DC-optimized string inverter system is the clear choice—capturing more energy, minimizing losses, and preparing for the future of solar + storage.

--

Vous en voulez plus ?

Séminaire en ligne : Le 15 avril (jour de l'impôt aux États-Unis), nous organisons un séminaire en ligne qui abordera les détails de la série de taxes sur les micro-onduleurs. Inscrivez-vous au webinaire ici.

Vous trouverez ci-dessous la liste complète des chapitres inclus dans cette série (des liens seront ajoutés au fur et à mesure de la publication des chapitres) :

Vous trouverez ci-dessous la liste complète des chapitres inclus dans cette série (des liens seront ajoutés au fur et à mesure de la publication des chapitres) :

  1. Résumé : La taxe sur les micro-onduleurs en pleine croissance
  2. Lignes de tendance : Changements majeurs dans l'industrie solaire
  3. Taxe d'écrêtage : Laisser de l'énergie sur la table
  4. Taxe de conversion : Le coût caché des batteries couplées au courant alternatif
  5. Taxe sur l'équipement : Plus de matériel, plus de problèmes
  6. La solution est le courant continu : Optimiseurs DC, batteries couplées DC
  7. Bonus: Clipping showdown: Not all DC:AC ratios are equal
  8. Glossaire

Partager

Articles d'actualité

TOUT VOIR
Précédent
Suivant

Messages du blog

TOUT VOIR
Précédent
Suivant
Inscrivez-vous à notre bulletin d'information
Merci de vous être inscrits !
Oups ! Quelque chose s'est mal passé lors de l'envoi du formulaire.